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Outline of the Course
1. Review of Probability
2. Stationary processes
3. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
4. The Learning Problem
5. Training vs Testing
6. The Wiener Filter
7. Adaptive Optimization: Steepest descent and the LMS algorithm
8. Overfitting and Regularization
9. Logistic, Ridge and Lasso regression.

10. Neural Networks
11. Matrix Completion
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Adaptive Optimization and Filtering Methods

Motivation
Adaptive optimization and filtering methods are appropriate, advantageous, or
necessary when:
I Signal statistics are not known a priori and must be “learned” from

observed or representative samples
I Signal statistics evolve over time
I Time or computational restrictions dictate that simple, if repetitive,

operations be employed rather than solving more complex, closed form
expressions

I To be considered are the following algorithms:
I Steepest Descent (SD) – deterministic
I Least Means Squared (LMS) – stochastic
I Recursive Least Squares (RLS) – deterministic
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Definition (Steepest Descent (SD))
Steepest descent, also known as gradient descent, it is an iterative technique
for finding the local minimum of a function.
Approach: Given an arbitrary starting point, the current location (value) is
moved in steps proportional to the negatives of the gradient at the current
point.

I SD is an old, deterministic method, that is the basis for stochastic
gradient based methods

I SD is a feedback approach to finding local minimum of an error
performance surface

I The error surface must be known a priori
I In the MSE case, SD converges converges to the optimal solution,

w0 = R−1p, without inverting a matrix
Question: Why in the MSE case does this converge to the global
minimum rather than a local minimum?
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Example
Consider a well structured cost function with a single minimum. The
optimization proceeds as follows:

Contour plot showing that evolution of the optimization
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Example
Consider a gradient ascent example in which there are multiple
minima/maxima

Surface plot showing the multiple minima and
maxima

Contour plot illustrating that the final result
depends on starting value
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To derive the approach, consider the FIR case:

{x(n)} – the WSS input samples
{d(n)} – the WSS desired output
{d̂(n)} – the estimate of the desired signal given by

d̂(n) = wH(n)x(n)
where

x(n) = [x(n),x(n−1), · · · ,x(n−M + 1)]T [obs. vector]
w(n) = [w0(n),w1(n), · · · ,wM-1(n)]T [time indexed filter coefs.]
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Then similarly to previously considered cases

e(n) = d(n)− d̂(n) = d(n)−wH(n)x(n)

and the MSE at time n is

J(n) = E{|e(n)|2}
= σ2

d−wH(n)p−pHw(n) + wH(n)Rw(n)

where
σ2
d – variance of desired signal

p – cross-correlation between x(n) and d(n)
R – correlation matrix of x(n)

Note: The weight vector and cost function are time indexed (functions of
time)
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When w(n) is set to the (optimal) Wiener solution,

w(n) = w0 = R−1p

and
J(n) = Jmin = σ2

d−pHw0

I Use the method of steepest descent to iteratively find w0.
I The optimal result is achieved since the cost function is a second order

polynomial with a single unique minimum
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Example
Let M = 2. The MSE is a bowl–shaped surface, which is a function of the
2-D space weight vector w(n)

A contour of the MSE is given as
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Contour Plot
Imagine dropping a marble at any point on the bowl-shaped surface.
The ball will reach the minimum point by going through the path of steepest
descent.
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Observation: Set the direction of filter update as: −∇J(n)
Resulting Update:

w(n+ 1) = w(n) + 1
2µ[−∇J(n)]

or, since ∇J(n) =−2p + 2Rw(n)

w(n+ 1) = w(n) +µ[p−Rw(n)] n= 0,1,2, · · ·
where w(0) = 0 (or other appropriate value) and µ is the step size
Observation: SD uses feedback, which makes it possible for the system to be
unstable
I Bounds on the step size guaranteeing stability can be determined with

respect to the eigenvalues of R (Widrow, 1970)
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Convergence Analysis
Define the error vector for the tap weights as

c(n) = w(n)−w0

Then using p = Rw0 in the update,

w(n+ 1) = w(n) +µ[p−Rw(n)]
= w(n) +µ[Rw0−Rw(n)]
= w(n)−µRc(n)

and subtracting w0 from both sides

w(n+ 1)−w0 = w(n)−w0−µRc(n)
⇒ c(n+ 1) = c(n)−µRc(n)

= [I−µR]c(n)



12/72

Adaptive Optimization FSAN/ELEG815

Using the Unitary Similarity Transform

R = QΩΩΩQH

we have

c(n+ 1) = [I−µR]c(n)
= [I−µQΩΩΩQH ]c(n)

⇒QHc(n+ 1) = [QH −µQHQΩΩΩQH ]c(n)
= [I−µΩΩΩ]QHc(n) (∗)

Define the transformed coefficients as

v(n) = QHc(n)
= QH(w(n)−w0)

Then (∗) becomes
v(n+ 1) = [I−µΩΩΩ]v(n)
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Consider the initial condition of v(n)

v(0) = QH(w(0)−w0)
= −QHw0 [if w(0) = 0]

Consider the kth term (mode) in

v(n+ 1) = [I−µΩΩΩ]v(n)

I Note [I−µΩΩΩ] is diagonal
I Thus all modes are independently updated
I The update for the kth term can be written as

vk(n+ 1) = (1−µλk)vk(n) k = 1,2, · · · ,M

or using recursion
vk(n) = (1−µλk)nvk(0)
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Observation: Conversion to the optimal solution requires

lim
n→∞w(n) = w0

⇒ lim
n→∞c(n) = lim

n→∞w(n)−w0 = 0

⇒ lim
n→∞v(n) = lim

n→∞QHc(n) = 0
⇒ lim

n→∞vk(n) = 0 k = 1,2, · · · ,M (∗)

Result: According to the recursion

vk(n) = (1−µλk)nvk(0)

the limit in (∗) holds if and only if

|1−µλk|< 1 for all k

Thus since the eigenvalues are nonnegative, 0< µλmax < 2, or

0< µ <
2

λmax
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Observation: The kth mode has geometric decay

vk(n) = (1−µλk)nvk(0)

I The rate of decay it is characterized by the time it takes to decay to e−1

of the initial value
I Let τk denote this time for the kth mode

vk(τk) = (1−µλk)τkvk(0) = e−1vk(0)
⇒ e−1 = (1−µλk)τk

⇒ τk = −1
ln(1−µλk)

≈ 1
µλk

for µ� 1

Result: The overall rate of decay is
−1

ln(1−µλmax) ≤ τ ≤
−1

ln(1−µλmin)
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Example
Consider the typical behavior of a single mode
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Error Analysis
Recall that

J(n) = Jmin + (w(n)−w0)HR(w(n)−w0)
= Jmin + (w(n)−w0)HQΩΩΩQH(w(n)−w0)
= Jmin + v(n)HΩΩΩv(n)

= Jmin +
M∑
k=1

λk|vk(n)|2 [sub in vk(n) = (1−µλk)nvk(0)]

= Jmin +
M∑
k=1

λk(1−µλk)2n|vk(0)|2

Result: If 0< µ < 2
λmax

,
then

lim
n→∞J(n) = Jmin
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Example
Consider a two–tap predictor for real–valued input

λ

χ

Analyzed the effects of the following cases:
I Varying the eigenvalue spread χ(R) = λmax

λmin
while keeping µ fixed

I Varying µ and keeping the eigenvalue spread χ(R) fixed
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SD loci plots (with shown J(n) contours) as a function of [v1(n),v2(n)] for
step-size µ= 0.3

I Eigenvalue spread: χ(R) = 1.22
I Small eigenvalue spread ⇒ modes

converge at a similar rate

I Eigenvalue spread: χ(R) = 3
I Moderate eigenvalue spread ⇒ modes

converge at moderately similar rates
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SD loci plots (with shown J(n) contours) as a function of [v1(n),v2(n)] for
step-size µ= 0.3

I Eigenvalue spread: χ(R) = 10
I Large eigenvalue spread ⇒ modes

converge at different rates

I Eigenvalue spread: χ(R) = 100
I Very large eigenvalue spread ⇒ modes

converge at very different rates
I Principle direction convergence is fastest
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SD loci plots (with shown J(n) contours) as a function of [w1(n),w2(n)] for
step-size µ= 0.3

I Eigenvalue spread: χ(R) = 1.22
I Small eigenvalue spread ⇒ modes

converge at a similar rate

I Eigenvalue spread: χ(R) = 3
I Moderate eigenvalue spread ⇒ modes

converge at moderately similar rates
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SD loci plots (with shown J(n) contours) as a function of [w1(n),w2(n)] for
step-size µ= 0.3

I Eigenvalue spread: χ(R) = 10
I Large eigenvalue spread ⇒ modes

converge at different rates

I Eigenvalue spread: χ(R) = 100
I Very large eigenvalue spread ⇒ modes

converge at very different rates
I Principle direction convergence is fastest
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Learning curves of steepest-descent algorithm with step-size parameter
µ= 0.3 and varying eigenvalue spread.
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SD loci plots (with shown J(n) contours) as a function of [v1(n),v2(n)] with
χ(R) = 10 and varying step–sizes

I Step–sizes: µ= 0.3
I This is over–damped ⇒ slow

convergence

I Step–sizes: µ= 1
I This is under–damped ⇒ fast (erratic)

convergence
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SD loci plots (with shown J(n) contours) as a function of [w1(n),w2(n)] with
χ(R) = 10 and varying step–sizes

I Step–sizes: µ= 0.3
I This is over–damped ⇒ slow

convergence

I Step–sizes: µ= 1
I This is under–damped ⇒ fast (erratic)

convergence
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Example
Consider a system identification problem

w(n) system

{ x(n)}

)(ˆ nd d(n)+_

e(n)

Suppose M = 2 and

Rx =
[

1 0.8
0.8 1

]
P =

[
0.8
0.5

]
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From eigen analysis we have

λ1 = 1.8,λ2 = 0.2⇒ µ <
2

1.8
also

q1 = 1√
2

[
1
1

]
q2 = 1√

2

[
1
−1

]
and

Q = 1√
2

[
1 1
1 −1

]
Also,

w0 = R−1p =
[

1.11
−0.389

]



28/72

Adaptive Optimization FSAN/ELEG815

Thus
v(n) = QH [w(n)−w0]

Noting that

v(0) =−QHw0 =− 1√
2

[
1 1
1 −1

][
1.11
−0.389

]
=
[

0.51
1.06

]

and
v1(n) = (1−µ(1.8))n0.51
v2(n) = (1−µ(0.2))n1.06



29/72

Adaptive Optimization FSAN/ELEG815

SD convergence properties for two µ values

I Step–sizes: µ= 0.5
I This is over–damped ⇒ slow

convergence

I Step–sizes: µ= 1
I This is under–damped ⇒ fast

(erratic) convergence
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Least Mean Squares (LMS) Algorithm

Definition
Motivation: The error performance surface used by the SD method is not
always known a priori
Solution: Use estimated values. We will use the following instantaneous
estimates

R̂(n) = x(n)xH(n)
p̂(n) = x(n)d∗(n)

Result: The estimates are RVs and thus this leads to a stochastic optimization
Historical Note: Invented in 1960 by Stanford University professor Bernard
Widrow and his first Ph.D. student, Ted Hoff
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Recall the SD update

w(n+ 1) = w(n) + 1
2µ[−∇(J(n))]

where the gradient of the error surface at w(n) was shown to be

∇(J(n)) =−2p + 2Rw(n)

Using the instantaneous estimates,

∇̂(J(n)) = −2x(n)d∗(n) + 2x(n)xH(n)w(n)
= −2x(n)[d∗(n)−xH(n)w(n)]
= −2x(n)[d∗(n)− d̂∗(n)]
= −2x(n)e∗(n)

where e∗(n) is the complex conjugate of the estimate error.
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Utilizing ∇(J(n)) =−2x(n)e∗(n) in the update

w(n+ 1) = w(n) + 1
2µ[−∇(J(n))]

= w(n) +µx(n)e∗(n) [LMS Update]

I The LMS algorithm belongs to the family of stochastic gradient algorithms
I The update is extremely simple
I Although the instantaneous estimates may have large variance, the LMS

algorithm is recursive and effectively averages these estimates
I The simplicity and good performance of the LMS algorithm make it the

benchmark against which other optimization algorithms are judged
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Convergence Analysis
Independence Theorem
The following conditions hold:
1. The vectors x(1),x(2), · · · ,x(n) are statistically independent
2. x(n) is independent of d(1),d(2), · · · ,d(n−1)
3. d(n) is statistically dependent on x(n), but is independent of
d(1),d(2), · · · ,d(n−1)

4. x(n) and d(n) are mutually Gaussian

I The independence theorem is invoked in the LMS algorithm analysis
I The independence theorem is justified in some cases, e.g., beamforming

where we receive independent vector observations
I In other cases it is not well justified, but allows the analysis to proceeds

(i.e., when all else fails, invoke simplifying assumptions)
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We will invoke the independence theorem to show that w(n) converges to the
optimal solution in the mean

lim
n→∞E{w(n)}= w0

To prove this, evaluate the update

w(n+ 1) = w(n) +µx(n)e∗(n)
⇒w(n+ 1)−w0 = w(n)−w0 +µx(n)e∗(n)

⇒ c(n+ 1) = c(n) +µx(n)(d∗(n)−xH(n)w(n))
= c(n) +µx(n)d∗(n)−µx(n)xH(n)[w(n)−w0 + w0]
= c(n) +µx(n)d∗(n)−µx(n)xH(n)c(n)
−µx(n)xH(n)w0

= [I−µx(n)xH(n)]c(n) +µx(n)[d∗(n)−xH(n)w0]
= [I−µx(n)xH(n)]c(n) +µx(n)e∗0(n)
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Take the expectation of the update noting that
I w(n) is based on past inputs and desired values
⇒ w(n), and consequently c(n)), are independent of x(n) (Independence

Theorem)
Thus

c(n+ 1) = [I−µx(n)xH(n)]c(n) +µx(n)e∗0(n)
⇒ E{c(n+ 1)} = (I−µR)E{c(n)}+µE{x(n)e∗0(n)}︸ ︷︷ ︸

=0 why?

= (I−µR)E{c(n)}
Using arguments similar to the SD case we have

lim
n→∞E{c(n)}= 0 if 0< µ <

2
λmax

or equivalently

lim
n→∞E{w(n)}= w0 if 0< µ <

2
λmax
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Noting that ∑M
i=1λi = trace[R]

⇒ λmax ≤ trace[R] =Mr(0) =Mσ2
x

Thus a more conservative bound (and one easier to determine) is

0< µ <
2

Mσ2
x

I Convergence in the mean

lim
n→∞E{w(n)}= w0

is a weak condition that says nothing about the variance, which may even
grow

I A stronger condition is convergence in the mean square, which says

lim
n→∞E{|c(n)|2}= constant
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Proving convergence in the mean square is equivalent to showing that

lim
n→∞J(n) = lim

n→∞E{|e(n)|2}= constant

To evaluate the limit, write e(n) as

e(n) = d(n)− d̂(n) = d(n)−wH(n)x(n)
= d(n)−wH

0 x(n)− [wH(n)−wH
0 ]x(n)

= e0(n)−cH(n)x(n)

Thus

J(n) = E{|e(n)|2}
= E

{(
e0(n)−cH(n)x(n)

)(
e∗0(n)−xH(n)c(n)

)}
= Jmin +E{cH(n)x(n)xH(n)c(n)}︸ ︷︷ ︸

Jex(n)

[Cross terms → 0, why?]

= Jmin +Jex(n)
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Consider again

Jex(n) =
M∑
i=1

λisi(n)

Taking the limit and utilizing si(n) = µJmin
2−µλi

,

lim
n→∞Jex(n) = Jmin

M∑
i=1

µλi
2−µλi

The LMS misadjustment is defined as

MA= limn→∞Jex(n)
Jmin

=
M∑
i=1

µλi
2−µλi

Note: A misadjustment at 10% or less is generally considered acceptable.
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Example

µ

µ

I This is a one tap predictor

x̂(n) = w(n)x(n−1)

I Take the underlying process to be a real
order one AR process

x(n) =−ax(n−1) +v(n)

The weight update is

w(n+ 1) = w(n) +µx(n−1)e(n) [LMS update for obs. x(n−1)]
= w(n) +µx(n−1)[x(n)−w(n)x(n−1)]
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Since
x(n) =−ax(n−1) +v(n) [AR model]

and

x̂(n) = w(n)x(n−1) [one tap predictor]
⇒ w0 = −a

Note that
E{x(n−1)eo(n)}= E{x(n−1)v(n)}= 0

proves the optimality
I Set µ= 0.05 and consider two cases

a σ2
x

-0.99 0.93627
0.99 0.995
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Figure: Transient behavior of adaptive first-order predictor weight ŵ(n) for µ= 0.05.
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Figure: Transient behavior of adaptive first-order predictor squared error for µ= 0.05.
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Figure: Mean-squared error learning curves for an adaptive first-order predictor with varying
step-size parameter µ.
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Consider the expected trajectory of w(n). Recall

w(n+ 1) = w(n) +µx(n−1)e(n)
= w(n) +µx(n−1)[x(n)−w(n)x(n−1)]
= [1−µx(n−1)x(n−1)]w(n) +µx(n−1)x(n)

In this example, x(n) =−ax(n−1) +v(n). Substituting in:

w(n+ 1) = [1−µx(n−1)x(n−1)]w(n) +µx(n−1)[−ax(n−1)
+v(n)]

= [1−µx(n−1)x(n−1)]w(n)−µax(n−1)x(n−1)
+µx(n−1)v(n)

Taking the expectation and invoking the dependence theorem

E{w(n+ 1)}= (1−µσ2
x)E{w(n)}−µσ2

xa
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Figure: Comparison of experimental results with theory, based on ŵ(n).
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Next, derive a theoretical expression for J(n).
Note that the initial value of J(n) is

J(0) = E{(x(0)−w(0)x(−1))2}= E{(x(0))2}= σ2
x

and the final value is
J(∞) = Jmin +Jex

= E{(x(n)−w(n)x(n−1))2}+Jex

= E{(v(n))2}+Jex

= σ2
v +Jmin

µλ1
2−µλ1

Note λ1 = σ2
x. Thus,

J(∞) = σ2
v +σ2

v

(
µσ2

x

2−µσ2
x

)

= σ2
v

(
1 + µσ2

x

2−µσ2
x

)
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And if µ is small

J(∞) = σ2
v

(
1 + µσ2

x

2−µσ2
x

)

≈ σ2
v

(
1 + µσ2

x

2

)

Putting all the components together:

J(n) = [σ2
x−σ2

v(1 + µ

2σ
2
x)]︸ ︷︷ ︸

J(0)−J(∞)

(1−µσ2
x)2n︸ ︷︷ ︸

1→0

+σ2
v(1 + µ

2σ
2
x)︸ ︷︷ ︸

J(∞)

Also, the time constant is

τ =− 1
2ln(1−µλ1) =− 1

2ln(1−µσ2
x) ≈

1
2µσ2

x
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Figure: Comparison of experimental results with theory for the adaptive predictor, based on
the mean-square error for µ= 0.001.
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Example (Adaptive Equalization)
Objective: Pass a known signal through an unknown channel to invert the
effects the channel and noise have on the signal
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I The signal is a Bernoulli sequence

xn =
{

+1 with probability 1/2
−1 with probability 1/2

I The additive noise is ∼N(0,0.001)
I The channel has a raised cosine response

hn =
{ 1

2

[
1 + cos

(
2π
w (n−2)

)]
n= 1,2,3

0 otherwise

⇒ w controls the eigenvalue spread χ(R)
⇒ hn is symmetric about n= 2 and thus introduces a delay of 2

I We will use an M = 11 tap filter, which is symmetric about n= 5
⇒ Introduce a delay of 5

I Thus an overall delay of δ = 5 + 2 = 7 is added to the system
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Channel response and Filter response

Figure: (a) Impulse response of channel; (b) impulse response of optimum transversal
equalizer.
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Consider three w values

Note the step size is bound by the w = 3.5 case

µ≤ 2
Mr(0) = 2

11(1.3022) = 0.14

Choose µ= 0.075 in all cases.
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Figure: Learning curves of the LMS algorithm for an adaptive equalizer with number of taps
M = 11, step-size parameter µ= 0.075, and varying eigenvalue spread χ(R).
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Ensemble-average impulse response of the adaptive equalizer (after 1000
iterations) for each of four different eigenvalue spreads.



55/72

Adaptive Optimization FSAN/ELEG815

Figure: Learning curves of the LMS algorithm for an adaptive equalizer with the number of
taps M = 11, fixed eigenvalue spread, and varying step-size parameter µ.
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Normalized LMS Algorithm
Observation: The LMS correction is proportional to µx(n)e∗(n)

w(n+ 1) = w(n) +µx(n)e∗(n)

I If x(n) is large, the LMS update suffers from gradient noise amplification
I The normalized LMS algorithm seeks to avoid gradient noise amplification
I The step size is made time varying, µ(n), and optimized to minimize

the next step error

w(n+ 1) = w(n) + 1
2µ(n)[−∇J(n)]

= w(n) +µ(n)[p−Rw(n)]

Choose µ(n), such that w(n+ 1) produces the minimum MSE,

J(n+ 1) = E{|e(n+ 1)|2}
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Let ∇(n)≡∇J(n) and note

e(n+ 1) = d(n+ 1)−wH(n+ 1)x(n+ 1)

Objective: Choose µ(n) such that it minimizes J(n+ 1)
I The optimal step size, µ0(n), will be a function of R and ∇(n).
⇒ Use instantaneous estimates of these values

I To determine µ0(n), expand J(n+ 1)

J(n+ 1) = E{e(n+ 1)e∗(n+ 1)}
= E{(d(n+ 1)−wH(n+ 1)x(n+ 1))

(d∗(n+ 1)−xH(n+ 1)w(n+ 1))}
= σ2

d−wH(n+ 1)p−pHw(n+ 1)
+wH(n+ 1)Rw(n+ 1)
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Now use the fact that w(n+ 1) = w(n)− 1
2µ(n)∇(n)

J(n+ 1) = σ2
d−wH(n+ 1)p−pHw(n+ 1)

+wH(n+ 1)Rw(n+ 1)

= σ2
d−

[
w(n)− 1

2µ(n)∇(n)
]H

p

−pH
[
w(n)− 1

2µ(n)∇(n)
]

+
[
w(n)− 1

2µ(n)∇(n)
]H

R
[
w(n)− 1

2µ(n)∇(n)
]

︸ ︷︷ ︸
= wH(n)Rw(n)− 1

2µ(n)wH(n)R∇(n)

−1
2µ(n)∇H(n)Rw(n) + 1

4µ
2(n)∇H(n)R∇(n)
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J(n+ 1) = σ2
d−

[
w(n)− 1

2µ(n)∇(n)
]H

p

−pH
[
w(n)− 1

2µ(n)∇(n)
]

+wH(n)Rw(n)− 1
2µ(n)wH(n)R∇(n)

−1
2µ(n)∇H(n)Rw(n) + 1

4µ
2(n)∇H(n)R∇(n)

Differentiating with respect to µ(n),

∂J(n+ 1)
∂µ(n) = 1

2∇
H(n)p + 1

2pH∇(n)− 1
2wHR∇(n)

−1
2∇

H(n)Rw(n) + 1
2µ(n)∇H(n)R∇(n) (∗)
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Setting (∗) equal to 0

µ0(n)∇H(n)R∇(n) = wH(n)R∇(n)−pH∇(n)
+∇H(n)Rw(n)−∇H(n)p

⇒ µ0(n) = wH(n)R∇(n)−pH∇(n) +∇H(n)Rw(n)−∇H(n)p
∇H(n)R∇(n)

= [wH(n)R−pH ]∇(n) +∇H(n)[Rw(n)−p]
∇H(n)R∇(n)

= [Rw(n)−p]H∇(n) +∇H(n)[Rw(n)−p]
∇H(n)R∇(n)

=
1
2∇

H(n)∇(n) + 1
2∇

H(n)∇(n)
∇H(n)R∇(n)

= ∇H(n)∇(n)
∇H(n)R∇(n)
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Using instantaneous estimates

R̂ = x(n)xH(n) and p̂ = x(n)d∗(n)
⇒ ∇̂(n) = 2[R̂w(n)− p̂]

= 2[x(n)xH(n)w(n)−x(n)d∗(n)]
= 2[x(n)(d̂∗(n)−d∗(n))]
= −2x(n)e∗(n)

Thus

µ0(n) = ∇H(n)∇(n)
∇H(n)R∇(n) = 4xH(n)e(n)x(n)e∗(n)

2xH(n)e(n)x(n)xH(n)2x(n)e∗(n)

= |e(n)|2xH(n)x(n)
|e(n)|2(xH(n)x(n))2

= 1
xH(n)x(n) = 1

||x(n)||2
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Result: The NLMS update is

w(n+ 1) = w(n) + µ̃

||x(n)||2︸ ︷︷ ︸
µ(n)

x(n)e∗(n)

I µ̃ is introduced to scale the update
I To avoid problems when ||x(n)||2 ≈ 0 we add an offset

w(n+ 1) = w(n) + µ̃

a+ ||x(n)||2 x(n)e∗(n)

where a > 0



63/72

Adaptive Optimization FSAN/ELEG815

Objective: Analyze the NLMS convergence

w(n+ 1) = w(n) + µ̃

||x(n)||2 x(n)e∗(n)

Substituting e(n) = d(n)−wH(n)x(n)

w(n+ 1) = w(n) + µ̃

||x(n)||2 x(n)[d∗(n)−xH(n)w(n)]

=
[
I− µ̃x(n)xH(n)

||x(n)||2

]
w(n) + µ̃

x(n)d∗(n)
||x(n)||2
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Objective: Compare the NLMS and LMS algorithms:
I NLMS:

w(n+ 1) =
[
I− µ̃x(n)xH(n)

||x(n)||2

]
w(n) + µ̃

x(n)d∗(n)
||x(n)||2

I LMS:
w(n+ 1) = [I−µx(n)xH(n)]w(n) +µx(n)d∗(n)

By observation, we see the following corresponding terms

LMS NLMS
µ µ̃

x(n)xH(n) x(n)xH(n)
||x(n)||2

x(n)d∗(n) x(n)d∗(n)
||x(n)||2
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LMS NLMS
µ µ̃

x(n)xH(n) x(n)xH(n)
||x(n)||2

x(n)d∗(n) x(n)d∗(n)
||x(n)||2

I LMS case:
0< µ <

2
trace[E{x(n)xH(n)}] = 2

trace[R]
guarantees stability

I By analogy,
0< µ̃ <

2

trace
[
E
{

x(n)xH(n)
||x(n)||2

}]
guarantees stability of the NLMS
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To analyze the bound, make the following approximation

E

{
x(n)xH(n)
||x(n)||2

}
≈ E{x(n)xH(n)}

E{||x(n)||2}

Then

trace
[
E

{
x(n)xH(n)
||x(n)||2

}]
= trace[E{x(n)xH(n)}]

E{||x(n)||2}

= E{trace[x(n)xH(n)]}
E{||x(n)||2}

= E{trace[xH(n)x(n)]}
E{||x(n)||2}

= E{trace[||x(n)||2]}
E{||x(n)||2}

= 1
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Thus
0< µ̃ <

2

trace
[
E
{

x(n)xH(n)
||x(n)||2

}] = 2

Final Result: The NLMS update

w(n+ 1) = w(n) + µ̃
x(n)
||x(n)||2 e

∗(n)

will converge if 0< µ̃ < 2
Note:
I The NLMS has a simpler convergence criterion than the LMS
I The NLMS generally converges faster than the LMS algorithm
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